Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
EBioMedicine ; 95: 104732, 2023 Sep.
Article En | MEDLINE | ID: mdl-37506557

BACKGROUND: Biomarkers predicting the outcome of HIV-1 virus control in natural infection and after therapeutic interventions in HIV-1 cure trials remain poorly defined. The BCN02 trial (NCT02616874), combined a T-cell vaccine with romidepsin (RMD), a cancer-drug that was used to promote HIV-1 latency reversal and which has also been shown to have beneficial effects on neurofunction. We conducted longitudinal plasma proteomics analyses in trial participants to define biomarkers associated with virus control during monitored antiretroviral pause (MAP) and to identify novel therapeutic targets that can improve future cure strategies. METHODS: BCN02 was a phase I, open-label, single-arm clinical trial in early-treated, HIV infected individuals. Longitudinal plasma proteomes were analyzed in 11 BCN02 participants, including 8 participants that showed a rapid HIV-1 plasma rebound during a monitored antiretroviral pause (MAP-NC, 'non-controllers') and 3 that remained off ART with sustained plasma viremia <2000 copies/ml (MAP-C, 'controllers'). Inflammatory and neurological proteomes in plasma were evaluated and integration data analysis (viral and neurocognitive parameters) was performed. Validation studies were conducted in a cohort of untreated HIV-1+ individuals (n = 96) and in vitro viral replication assays using an anti-CD33 antibody were used for functional validation. FINDINGS: Inflammatory plasma proteomes in BCN02 participants showed marked longitudinal alterations. Strong proteome differences were also observed between MAP-C and MAP-NC, including in baseline timepoints. CD33/Siglec-3 was the unique plasma marker with the ability to discriminate between MAPC-C and MAP-NC at all study timepoints and showed positive correlations with viral parameters. Analyses in an untreated cohort of PLWH confirmed the positive correlation between viral parameters and CD33 plasma levels, as well as PBMC gene expression. Finally, adding an anti-CD33 antibody to in vitro virus cultures significantly reduced HIV-1 replication and proviral levels in T cells and macrophages. INTERPRETATION: This study indicates that CD33/Siglec-3 may serve as a predictor of HIV-1 control and as potential therapeutic tool to improve future cure strategies. FUNDING: Spanish Science and Innovation Ministry (SAF2017-89726-R and PID2020-119710RB-I00), NIH (P01-AI131568), European Commission (GA101057548) and a Grifols research agreement.


Biomarkers , HIV Infections , HIV-1 , Viral Load , Humans , CD4-Positive T-Lymphocytes , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/immunology , HIV Seropositivity , HIV-1/genetics , HIV-1/physiology , Leukocytes, Mononuclear , Proteome , Proteomics , Sialic Acid Binding Ig-like Lectin 3/blood , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/immunology , Vaccination , Viral Load/drug effects , Viral Load/genetics , Viral Load/immunology , Anti-HIV Agents , Biomarkers/blood , Biomarkers/metabolism
2.
Commun Biol ; 6(1): 487, 2023 05 10.
Article En | MEDLINE | ID: mdl-37165099

Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.


CD4-Positive T-Lymphocytes , HIV-1 , Codon Usage , HIV-1/physiology , RNA, Viral/genetics , Virus Latency/genetics
3.
J Virol ; 97(2): e0165522, 2023 02 28.
Article En | MEDLINE | ID: mdl-36719240

The implementation and access to combined antiretroviral treatment (cART) have dramatically improved the quality of life of people living with HIV (PLWH). However, some comorbidities, such as neurological disorders associated with HIV infection still represent a serious clinical challenge. Soluble factors in plasma that are associated with control of HIV replication and neurological dysfunction could serve as early biomarkers and as new therapeutic targets for this comorbidity. We used a customized antibody array for determination of blood plasma factors in 40 untreated PLWH with different levels of viremia and found sirtuin-2 (SIRT2), an NAD-dependent deacetylase, to be strongly associated with elevated viral loads and HIV provirus levels, as well as with markers of neurological damage (a-synuclein [SNCA], brain-derived neurotrophic factor [BDNF], microtubule-associated protein tau [MAPT], and neurofilament light protein [NFL]). Also, longitudinal analysis in HIV-infected individuals with immediate (n = 9) or delayed initiation (n = 10) of cART revealed that after 1 year on cART, SIRT2 plasma levels differed between both groups and correlated inversely with brain orbitofrontal cortex involution. Furthermore, targeting SIRT2 with specific small-molecule inhibitors in in vitro systems using J-LAT A2 and primary glial cells led to diminished HIV replication and virus reactivation from latency. Our data thus identify SIRT2 as a novel biomarker of uncontrolled HIV infection, with potential impact on neurological dysfunction and offers a new therapeutic target for HIV treatment and cure. IMPORTANCE Neurocognitive disorders are frequently reported in people living with HIV (PLWH) even with the introduction of combined antiretroviral treatment (cART). To identify biomarkers and potential therapeutic tools to target HIV infection in peripheral blood and in the central nervous system (CNS), plasma proteomics were applied in untreated chronic HIV-infected individuals with different levels of virus control. High plasma levels of sirtuin-2 (SIRT2), an NAD+ deacetylase, were detected in uncontrolled HIV infection and were strongly associated with plasma viral load and proviral levels. In parallel, SIRT2 levels in the peripheral blood and CNS were associated with markers of neurological damage and brain involution and were more pronounced in individuals who initiated cART later in infection. In vitro infection experiments using specific SIRT2 inhibitors suggest that specific targeting of SIRT2 could offer new therapeutic treatment options for HIV infections and their associated neurological dysfunction.


HIV Infections , Nervous System Diseases , Sirtuin 2 , Humans , Biomarkers , HIV Infections/complications , HIV Infections/drug therapy , HIV-1 , Neurofilament Proteins/metabolism , Proviruses/metabolism , Quality of Life , Sirtuin 2/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , Nervous System Diseases/virology , Viral Load
4.
Front Immunol ; 13: 1027855, 2022.
Article En | MEDLINE | ID: mdl-36466823

The contribution of the HLA-E/NKG2X axis in NK-mediated control of HIV infection remains unclear. We have studied the relationship between HLA-E expression and phenotypical as well as functional characteristics of NK cells, in the context of chronic HIV infection and in an in vitro model of acute infection. High viremia in HIV+ individuals was related to increased HLA-E expression, and changes in NK subpopulations, especially a reduction of the CD56bright as well as an increase in adaptive NK subpopulation. Uncontrolled HIV infection was also characterized by a reversion of the NKG2A/NKG2C expression ratio and a loss of positive and negative regulation of NK mediated by HLA-E. This was reflected in a lower cytotoxic, degranulation and cytokine production capacity, especially in CD56bright and adaptive NK. In line with these results, HLA-E expression showed a positive correlation with viral growth inhibition in an in vitro model of acute infection at day 7, which was lost after 14 days of culture. Using HLA-E expressing K562 cells, we determined that only one out of 11 described HIV-derived HLA-E epitopes increased HLA-E surface stability. In spite of that, eight of the 11 epitopes were capable of increasing degranulation and three drove differences in NK-cell mediated cell lysis or cytokine secretion. In conclusion, our results indicate that HLA-E molecules presenting HIV-derived epitopes may sensitize target cells for NK lysis in early HIV infection. However, prolonged exposure to elevated HLA-E expression levels in vivo may lead to NK cell dysfunction and reduced viral control In chronic infection.


HIV Infections , Humans , Viremia , Epitopes , Cytokines , HLA-E Antigens
5.
EBioMedicine ; 78: 103956, 2022 Apr.
Article En | MEDLINE | ID: mdl-35325780

BACKGROUND: The BCN02-trial combined therapeutic vaccination with a viral latency reversing agent (romidepsin, RMD) in HIV-1-infected individuals and included a monitored antiretroviral pause (MAP) as an efficacy read-out identifying individuals with an early or late (< or > 4weeks) viral-rebound. Integrated -omics analyses were applied prior treatment interruption to identify markers of virus control during MAP. METHODS: PBMC, whole-genome DNA methylation and transcriptomics were assessed in 14 BCN02 participants, including 8 Early and 4 Late viral-rebound individuals. Chromatin state, histone marks and integration analysis (histone-3 acetylation (H3Ac), viral load, proviral levels and HIV-specific T cells responses) were included. REDUC-trial samples (n = 5) were included as a control group for RMD administration alone. FINDINGS: DNA methylation imprints after receiving the complete intervention discriminated Early versus Late viral-rebound individuals before MAP. Also, differential chromatin accessibility and histone marks at DNA methylation level were detected. Importantly, the differential DNA methylation positions (DMPs) between Early and Late rebounders before MAP were strongly associated with viral load, proviral levels as well as the HIV-specific T-cell responses. Most of these DMPs were already present prior to the intervention and accentuated after RMD infusion. INTERPRETATION: This study identifies host DNA methylation profiles and epigenetic cascades that are predictive of subsequent virus control in a kick-and-kill HIV cure strategy. FUNDING: European Union Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement N°681137-EAVI2020 and N°847943-MISTRAL, the Ministerio de Ciencia e Innovación (SAF2017_89726_R), and the National Institutes of Health-National Institute of Allergy and Infectious Diseases Program Grant P01-AI131568.


HIV Infections , Vaccines , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , Chromatin , Epigenesis, Genetic , HIV Infections/drug therapy , HIV Infections/genetics , Humans , Leukocytes, Mononuclear , Proviruses , Vaccines/therapeutic use , Viral Load
6.
J Immunol ; 205(12): 3348-3357, 2020 12 15.
Article En | MEDLINE | ID: mdl-33177161

Relative control of HIV-1 infection has been linked to genetic and immune host factors. In this study, we analyzed 96 plasma proteome arrays from chronic untreated HIV-1-infected individuals using the classificatory random forest approach to discriminate between uncontrolled disease (plasma viral load [pVL] >50,000 RNA copies/ml; CD4 counts 283 cells/mm3, n = 47) and relatively controlled disease (pVL <10,000 RNA copies/ml; CD4 counts 657 cells/mm3, n = 49). Our analysis highlighted the TNF molecule's relevance, in particular, TL1A (TNFSF15) and its cognate DR3 (TNFSRF25), both of which increased in the relative virus control phenotype. DR3 levels (in plasma and PBMCs) were validated in unrelated cohorts (including long-term nonprogressors), thus confirming their independence from CD4 counts and pVL. Further analysis in combined antiretroviral treatment (cART)-treated individuals with a wide range of CD4 counts (137-1835 cells/mm3) indicated that neither TL1A nor DR3 levels reflected recovery of CD4 counts with cART. Interestingly, in cART-treated individuals, plasma TL1A levels correlated with regulatory T cell frequencies, whereas soluble DR3 was strongly associated with the abundance of effector HLA-DR+CD8+ T cells. A positive correlation was also observed between plasma DR3 levels and the HIV-1-specific T cell responses. In vitro, costimulation of PBMC with DR3-specific mAb increased the magnitude of HIV-1-specific responses. Finally, in splenocytes of DNA.HTI-vaccinated mice, costimulation of HTI peptides and a DR3 agonist (4C12) intensified the magnitude of T cell responses by 27%. These data describe the role of the TL1A-DR3 axis in the natural control of HIV-1 infection and point to the use of DR3 agonists in HIV-1 vaccine regimens.


CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , Receptors, Tumor Necrosis Factor, Member 25/immunology , Tumor Necrosis Factor Ligand Superfamily Member 15/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/pharmacology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/metabolism , Female , HIV Infections/blood , HIV-1/metabolism , Humans , Male , Mice , Receptors, Tumor Necrosis Factor, Member 25/blood , Tumor Necrosis Factor Ligand Superfamily Member 15/blood
7.
PLoS Pathog ; 16(8): e1008678, 2020 08.
Article En | MEDLINE | ID: mdl-32760119

GWAS, immune analyses and biomarker screenings have identified host factors associated with in vivo HIV-1 control. However, there is a gap in the knowledge about the mechanisms that regulate the expression of such host factors. Here, we aimed to assess DNA methylation impact on host genome in natural HIV-1 control. To this end, whole DNA methylome in 70 untreated HIV-1 infected individuals with either high (>50,000 HIV-1-RNA copies/ml, n = 29) or low (<10,000 HIV-1-RNA copies/ml, n = 41) plasma viral load (pVL) levels were compared and identified 2,649 differentially methylated positions (DMPs). Of these, a classification random forest model selected 55 DMPs that correlated with virologic (pVL and proviral levels) and HIV-1 specific adaptive immunity parameters (IFNg-T cell responses and neutralizing antibodies capacity). Then, cluster and functional analyses identified two DMP clusters: cluster 1 contained hypo-methylated genes involved in antiviral and interferon response (e.g. PARP9, MX1, and USP18) in individuals with high viral loads while in cluster 2, genes related to T follicular helper cell (Tfh) commitment (e.g. CXCR5 and TCF7) were hyper-methylated in the same group of individuals with uncontrolled infection. For selected genes, mRNA levels negatively correlated with DNA methylation, confirming an epigenetic regulation of gene expression. Further, these gene expression signatures were also confirmed in early and chronic stages of infection, including untreated, cART treated and elite controllers HIV-1 infected individuals (n = 37). These data provide the first evidence that host genes critically involved in immune control of the virus are under methylation regulation in HIV-1 infection. These insights may offer new opportunities to identify novel mechanisms of in vivo virus control and may prove crucial for the development of future therapeutic interventions aimed at HIV-1 cure.


Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , DNA Methylation , HIV Infections/immunology , HIV-1/immunology , Interferon Regulatory Factors/genetics , Viral Load , Antiviral Agents/therapeutic use , Epigenesis, Genetic , Female , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Host-Pathogen Interactions , Humans , Interferon Regulatory Factors/metabolism , Interferons/metabolism , Male , T-Lymphocytes, Helper-Inducer/immunology , Virus Replication
...